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Three postulates are proposed concerning the probabilistic dynamics of chemi- 
cally reactive systems: the occurrence of the elementary event is a random 
variable characterized by a Poisson process; the state of the chemical system is a 
multivariate random variable characterized by a Markov process; the identity of 
any chemical species in the system is an independent random variable. These 
postulates when applied to chemically reactive systems in a uniform manner 
lead to a hierarchy of equations describing in detail how each k subpopulation 
varies with time. By summing over all permutations of the equation for 
f,<~)(el . . . . .  en; t) we obtain the usual master equation. This paper focuses on 

the simple isomerization reaction X ~  Y. 
/t 
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1. INTRODUCTION 

The purpose of this initial paper is to set the foundation for an alternative 
approach to the stochastic treatment of simple chemical systems. The 
treatment is based on three postulates describing the probabilistic dynamic 
nature of three ubiquitous random variables: (1) the occurrence of an 
elementary event; (2) the state of the chemical system; and (3) the identity 
of a chemical species. 

The focus here is on the simple isomerization reaction as the elemen- �9 

tary event, X~---- Y. A sub master equation is developed which describes the 

probabilistic time rate of change of the complete n-particle system in terms 
of the identity of each particle. This equation in component form represents 
2" coupled linear differential equations where n~1023. It is shown how a 
solution to this system can be analytically expressed in terms of the 2 • 2 
evolution matrix E(1) (t). 
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The analysis also shows that the system satisfies a factorization theo- 
rem (propagation of chaos) analogous to the result of Kac (l~ and 
McKean (16) for the Boltzmann equation. 

The master equation probability function, P2(x; t lx~ 0), is shown to 
be the convolution of the probability distribution functions for the random 
variables k, x ~ - k, x - k, and y0 _ (x - k), which are, respectively, the 
number of x ~ that become x, the number of x ~ that become y, the number 
o f y  ~ that become x, and the number o f y  ~ that becomey.  It is shown that k 
and x - k are independent normally distributed random variables and that 
their sum is then also a normally distributed random variable. 

Finally, the random force of the corresponding Langevin equation is 
derived as a function of the four fundamental sub master 2 state transition 
density functions. 

There are three fundamental postulates in the sub master equation 
theory: 

(I) The number of occurrences of an elementary event is a Poisson 
process. 

(II) The state of the system is a Markov process. 
(III) The identity of any particle in the system is an independent 

random variable. 

The point being made by the three postulates is that there are three 
characteristics of kinetically changing systems that are common to all 
systems: (1) occurrence of the process of change; (2) the state of the whole 
group of particles as an entity in itself; and (3) the identity of any and each 
particle as an entity in itself. 

The occurrence of the elementary event can safely be said to be a 
random process. The number of occurrences in any time interval should 
not depend on the past history of the number of occurrences; that is, the 
system can be seen to be like a radioactive nuclide with respect to its ability 
to produce a number of elementary events. Furthermore, the probability of 
a number of occurrences of the elementary event happening in any interval 
of time depends only on the length of the time interval and not on when in 
the history of the kinetically changing system the time interval was studied. 
Finally, we would also wish to guarantee that the probability of two 
occurrences happening at the same time is nil. 

These characteristics transcend whatever elementary mechanism is 
proposed and therefore apply to all. Hence the number of occurrences of 
an elementary event for an irreversible unimolecular process will be prob- 
abilistically similar to the number of occurrences of an elementary event for 
a reversible bimolecular process or of any process governing the production 
of events. The nature of the random process governing the number of 
occurrences of the elementary event is independent of the specific type of 
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chemistry involved. But this just describes a Poisson counting process 
(Parzen'(0 Gnedenk~ x 

For the isomerization reaction X~.-~ Y then, the probability of the 

number of occurrences of the forward process (reverse process) will be 

[ (~kf) n e_At 
forward process 

reverse process 

(1) 

The meaning of the constants X and # are more fundamental than the 
kl 

constants usually associated with the law of mass action X ~ Y. 
k i 

rate 

Here X and /~ take their meaning from the probabilistic nature of the 
number of occurrences of the isomerization. 

The state of the system is a specification of the identity of each object 
in the system. For large systems undergoing incredibly large numbers of 
occurrences of elementary events it is not unreasonable to expect that the 
system taken as a whole loses sight of its past history. 

That  the identity of any object in the system be an independent 
random variable is a reflection of the great number of objects in the system. 
Hence what one moiety should be at any time should be uncorrelated with 
any other identity. 

We emphasize that the objective in the stosszahlansatz is to formulate 
the nature of the probabilistic dynamics of kinetically changing systems in 
terms of laws that apply to all systems undergoing change regardless of the 
specifics of the set of elementary events involved. 

X 
2. THE SUB MASTER EQUATION FOR X~-  Y 

# 

We start by defining our notation for the state of the system and the 
probability of the state of the system having an isomerization as the 
elementary event and changing due to large numbers of occurrences of this 
elementary process: 

e( t )  = (el ,e  2 . . . .  , en; t) = the state of the system at time t 

= the specification of each identity, ei, of the objects in the system 

(2) 
f~n)(e l, . . . ,  en;t  ) = the joint probability that object I has 

identity e I . . . .  , object n has identity e~ at time t. (3) 

By Postulate II, the probability of state e occurring at time t + ~- is related 
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to the occurrence of a particular subset of all possible states at time t and 
not to any prior states. 

Hence we have 

f~(")(e 1 . . . .  , e,;t + ,r) 

=(Xce-X*)[ ~' . . . .  ' X i  . . . . .  e";t)6e'r] 

+(l~'re-'*)[ ~f(~')(e''''''Yii=l . . . . .  e';t)8e'x] 

+[1--~(X~'e-X*Seix+l~Te-V'8~'v)? 

+ 0 ("r) (4) 

where gee' is the Kronecker delta. 
This equation simply relates the probability of being in state e = 

(e 1 . . . . .  e,) at time t + ~- to the probability of being in the appropriate 
prior state e' = (e 1 . . . . . .  Xi, . . . ,  e,) or e" = (e I . . . . .  Yi . . . . .  e~) times the 

probability of a single occurrence of a X-event, X ~  Y, or of a /~-event, 
X ~  Y, respectively. Of course, there is a multiplicity of different prior 

# 
states other than those related to state e at time t + r by a single occur- 
rence. The prior state could be one such that k X-events andj /~-events  must 
occur in time ~- to obtain state e at time t + ~-. 

These higher-order terms having the form 

(X'r) k -.x.~]( (t~r)Je-,.)N (5) 
( ~ e  ) l  j t  

where 51. is a sum over the probabilities of the appropriate prior states, are 
seen to be proportional to ~.k+j, k + j  > 1. These terms are all lumped into 
the term represented by 00-)  since upon dividing by ~- it is easily seen that 
all these terms are zero in the limit as ~-~ 0. Hence taking f(nl (e t . . . . .  e,; 
t) to the left-hand side in (4), dividing both sides by ~, and taking the limit 
~--~ 0 we find what we call the sub master equation for the reversible 
unimolecular isomerization reaction 

Z f~(")(e I . . . . .  e,; t) 
8t 

t l  

= X E fn(n)(el . . . . .  X i ' ' ' ' '  en; t)(ae, r - 6e, x ) 
i = l  

+ l ~  f~(")(e, . . . . .  Yi , . . . ,e , ; t )(8~,x-8~iv)  (6) 
i = l  

The details can be found in Conlan. (3) 
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This equation governs the probabilistic emergence of the state of the 
system from f } " ) ( e  I . . . . .  en; 0) to fo("~(e 1 . . . .  , e~; t) and will lead to both 
the master equation and deterministic equation for the isomerization pro- 
cess. What is important to realize at this point is that the constants ), and/L 
are related to the Poisson nature of the occurrences of the elementary event 
and that the theory is essentially determined by single events. All multiple 
events dropped out of expression (6) since in the short time ~ only single 
occurrences of the X or /~ events can affect the time rate of change of 
f~(")(e, . . . . .  e,; t). 

3. THE MASTER EQUATION 

The master equation for the reversible unimolecular isomerization is a 
statement about the emergence of the probability of the number of X or Y 
species. Since this type of probability function is order independent, we see 
that the relationship between f~(~)(el . . . .  , e~; t) and P ( x ;  t) is 

f~("l(e l . . . . .  e,; t) = x!  y[  P ( x ;  t) (7) 
vP 

where by summing over all permutations of n objects composed of x X 
particles and y Y particles (x + y = n) any dependence upon the order is 
eliminated. Performing this operation on Eq. (6) leads directly to the master 
equation for the isomerization reaction (4'5~ 

~ t e ( x ; t ) - - X ( x  + 1)P(x + 1;t) + / ~ ( n -  (x + 1 ) ) e ( x -  1;t) 

-[Xx + x)]e(x;O (8) 
The remarkable observation to make is that the coefficients are derived and 
not assumed ad hoc as heretofore has been the case. For example, ?~(x + 1) 
is seen to be 

~k(x + 1 )=? t [  (x + 1)!(y-x!y! 1)! .y]  (9) 

and is the ratio of the number of identical permutations of x + 1 X 
particles and y - 1 Y particles to the number of identical permutations of x 
X particles and y Y particles times the number of Y particles (y) in 
e = (e 1 . . . .  , en; t). 

4. THE REDUCED SUB MASTER EQUATIONS AND THE SUB 
MASTER HIERARCHY 

The new feature introduced by the sub master formalism is obtained 
by summing over all possible identities of (e~+ 1 . . . . .  en) in f~(n)(el . . . . .  e~; 
t). This system of reduced equations describes the rate of change of the 
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probability of a subset of k identities. Hence we are led to a whole 
hierarchy of relationships reminiscent of the analogous BBGKY hierarchy 
that occurs in the Boltzmann equation theory. (6) As expected for a unimo- 
lecular mechanism the rate of change of f(nk)(el . . . .  , e~; t) is not related 
to f(k+O(e 1 . . . . .  ek+6t ). It takes at least a bimolecular mechanism to 
achieve this type of relationship. 

Defining the sum over all possible states of ek+ 1 (i.e., X and Y) as 

~,  f2k+' ) (e  1 . . . .  , ek+, ; t  ) -- f.(k)(e, . . . . .  ek; t  ) (10) 
ek+l=X, Y 

it is straightforward to show that 

3 f2k)(e,  . . . .  ek; t) 
i)t 

k 
= X E f,(k)(e,, ' ' '  , Xi . . . . .  e k ; t ) ( S e # -  ~eiX ) 

i=1 
k 

+ l ~ E  f(.k)(e,, ' ' '  , Yi, . . . .  ek;t)(de, x - 8eiv) (11) 
i=1 

(See Conlan (3) for details.) Specializing the equation to f ( l ) ( e ;  t) we find 

O--- f(nl)(e;t) = Xfn(1) (X; t ) (*er -  *eX ) + btfn(1)(Y;t)(*eX- *eY ) (12) 
Ot 

which in vector notation can be written as 

0-~f(~')(t) = [  -x~t -/t/~]f(~')(t) (13) 

The solution to (13) will play an important role in solving the complete 
equation (6). Introducing our notation for the differential operator in (13) 

(def.) A( , )=[  -x~ -#/~] (14) 

we see at once that AO) is the operator in the f vector space that affects the 
time differential of objects. We also define the vector f(i)(t) as 

-- f f(l)(x; t) } (15) 
(def.) f(O(t) [ f (~l)(Y;t)  

5. SOLUTION OF THE SUB MASTER EQUATION FORf~l)(e; t) 

It is obvious from Eq. (6) that what is involved here is a set of 2" 
couple d linear first-order differential equations where n is of the order of 
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1024. Clearly this is an impossible situation. However, owing to a rather 
remarkable product rule for matrices, the Kronecker product, and to an 
assumed ordering principle, the build-up principle, we can obtain the 
solution of (6) by studying the solution of the reduced equation forf~ 1)(e; t) 
derived in the previous section. 

Starting with Eq. (13) and using standard techniques (v) the solution is 
found to be 

/l + .~ e_(~+x)t ~ ~ e_(t~+x) t 
f~O(t) = /~ + )t / x - r A  /~ + X ~t + X 

x ff)(o) 
h e-(~+x)t _ _  + ~ e - ( ~ + x ) t  

/~+X / ~ + h  /~+X /z+X 

(I6) 

We define the matrix in (16) to be the evolution matrix, E(1)(t), and 
write (16) in the condensed form 

f(.')(t) = E(l)(t)f(1)(0) (17) 

E(o(t ) is a rather useful matrix as it contains information about the 
time evolution of the probability of being X or Y in a system of n species 
undergoing isomerization. 

We first note that the fundamental objects (E(o(t)) O. are the single- 
particle conditional sub master equation probability functions: 

f~(1)(X;tlX;O)= + X + ~ - ~  e-(~+~)t 

fn(O(X;tl Y;O)~  ~ P" e -("+x) '  
(def.) /~ + X /~ + ~' (18) 

f(O(y;t[X;O ) _  X X e-(~+x)t /~+~  tz+X 

f~(1)(y;t I Y;0)- -  X + /~ tL +----X ~ e- ("+x) '  

Hence we obtain immediately two nice properties of E(1)(t ) 

[ 0' l E(1)(0) = [ 

# + h  /.t + 2~ 
E(o(oe ) = E e =  

/z+?t  /~+?t 

the det(E(o(t))  furthermore has the value 

[E(,)(t)[ = e -(~+x)t 

(19) 

(20) 

(21) 
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which indicates that the evolution of an isomerizing system of particles 
proceeds relentlessly toward the singular state (which in this system is at 
equilibrium) characterized by an evolution operator that possesses no 
inverse. Furthermore, at equilibrium the system is described in probabilistic 
terms independently of the initial single-particle probability distribution, 
f(1) (0): 

It is easy to generalize (18) to an arbitrary initial time, % wherein we 
obtain 

E ( , , ( t -  r) = E ( l ) ( t ) .  E ( 1 ) ( - z  ) = E(1)(t  ) �9 [E(1)( 'r)] -1 (23) 

where we uac the property of E(1)(t) 

E(,)(,) = E(,)('r- t)" E(,)(t) (24) 

and that 

t <  (25) 

As Eq. (17) shows, all the time variation of f(~l)(t) is contained in 
E(1 ) (t). Moreover, it is easily shown from Eq. (13) that 

0 E(l)(t ) = A(1) . E( , ) ( t )  (26) 
~t 

This equation is fundamental in what follows. 

6. THE REDUCED SUB MASTER EQUATION FOR THE k-PARTICLE 
DISTRIBUTION FUNCTION 

We recall that A(l ) was the 2 • 2 operator in Eq. (13) obtained in the 
matrix formulation of the sub master equation for f(,1)(t). In examining the 
k-particle distribution function for 1 < k < n, we introduce a more com- 
plete vector formulation. Thus, for example, we use the Kronecker tensor 
product, | to define the 2k-dimensional column vector 

f(~k)(t) = ~ f( ,k)(e, . . . . .  ek; t) | |  | (27) 

where the sum is over all states e I . . . . .  e k for 1 < k < n. Rewriting (1 t) we 
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have 

3-~- f~k)(e 1 . . . . .  ek;t) = ~ [--Xf~k)(el  . . . .  X i , . . . , e k ; t  ) 
3t i = 1  

4-1~f(k)(e 1 . . . .  , Yi . . . . .  ek; t) ]Se, x 

+ [ ) t f~ (k ) (e l , . . . ,  X i , . . . ,  e~; t) 

- I f f ( k ) ( e l  . . . . .  Y i , ' " ,  ek;t)]Selr (28) 

We recognize that the ith member of the sum represents an application 
of A(l ) to the ith X - Y  pair in f (~ ) (e  I . . . .  , e , ; t )  in the ordered vector 
f(k) ( t )def ined by Eq. (27). Since f~(k)(el,. , ek; t) is a scalar in Eq. (27) 
we can place it anywhere within ,,x) {,x} 

t 8e, y (~ " " " @ ~ek Y 

Hence to transform (28) to vector form, we multiply both sides of the 
equation by 

~eiX 

and sum over all states of ei(e i = X or Y; i = 1 . . . . .  k): 

f? ) ( t )=Z Y, |  | 
i = l  el . . . . .  ek )k - - ~ t  i 

{ f~(~) (el . . . . .  X i . . . .  , e k ; t ) ) |  

X f (k)  (e, ,  , Y,., , ek ; t  ) ~e+ly 

0{:::;}] (29, 

Recalling the Kronecker product property, (A | B ) .  (C | D)  = (A �9 C) | 
(B �9 D), we can write (29) as 

Hence we have the following result that 
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where 
k 

I 0 0 ~ 
We call this the Leibnitz rule because of its relationship to the differential 
formula for a product of functions. 

8(e;t)--~ E(l)(t) 6,y [ ' - ~  

Thus 

7. THE GENERAL SOLUTION 

The general solution to (6) follows after some preliminary observations 
about E(l)(t ). We recall from Eq. (17) that E(o(t ) evolves f~O(0) into 
f~O(t). E(o(t ) can also operate upon the "delta vector" 8 ( ~;y ) to give 

+(SEX # )e -(~*+~')g 

+ ( ' e r  g+~h)e-(~+x) ' (31) 

=I::')(x;'lx;o)} 
8(X;t) [f.(O(Y;t X;0) 

(32) 
8(y;o=If.(1)( X;t Y;O) l 

[f.(l)(r; t Y;o)j 
Then Eq. (17) can be rewritten as 

( Sex ) | O) E(1)(t)" f('O(0) = ~E(1)(t)" (~eY 

= 2 8 ( e ;  t) | f}')(e; 0) (33) 
e 

In the solution forf~ 1)(t) we found that the evolution matrix contained 
all the time variation so that E(1)(t) satisfied the operator equation 

-~t E(o(t) = A(I) " Eo)(t) (34) 

where (O/Ot)E(o(t) indicates the matrix 

/~(0(/) = I/~11/~21 E22 El2 l 

It is shown in Conlan (3) by a tedious calculation that E(2 ) ---- E(1 ) | 
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E(]) (t) satisfied the following equation: 

~/E(2)(t)  = A(2 ) �9 E(l)(t ) @ E(l)(t) 

= ~. 1 0 | E(,)(t) |  ) 
i=1 0 1 )t - I x  

= E(1)(t ) | +/~(t)(t) | E(l)(t ) (35) 
Furthermore, it is also shown that 

f(~2~(t) = E( , ) ( t )  @ E(1)(t ) �9 f(~2)(0) (36) 

and that this is the precise I(2~ (t) that satisfies the sub master equation 

~t  f(~2)(t) = A(2) " f("2)(t) (37) 

All that is needed to find the general solution is to show that E(n)(t  ) 
satisfies 

a--i = �9 ( 3 8 )  

where E( . ) ( t )  is defined by 

E(, ) ( t )  =- E( l ) ( t  ) | . . .  | E ( , ) ( t )  (39) 

n 

Then defining %(n~ ( t ) =  E(n)( t ) .  %(~)(0), we find that %(~ (t) satisfies 

(4O)  

the sub master equation derived in (30) for k = n. 

Theorem.  For E( . ) ( t )  defined as in Eq. (39) 

Proof .  By Eqs. (29) and (39), the proof follows immediately. �9 

Hence the solution to the sub master equation (6) is 

f(~")(t) = E ( . ) ( t ) .  f(~")(0) (41) 

8. PROPAGATION OF CHAOS 

Kac (9't~ developed a factorization theorem for the Boltzmann equa- 
tion which showed that individual molecules behave independently when a 
system of molecules is large. Keizer (1~) in a recent article extends Kac's 
theorem and uses it to provide a more elementary proof of a theorem of 
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Kurtz dealing with the types of differential equations satisfied by the 
averages in certain birth and death processes in large systems. Due to the 
remarkable simplicity of the solution to the sub master equation for the 
reversible unimolecular reaction, we present here a factorization theorem 
for f(n) (t). 

Theorem (Propagation of Chaos). The exact type of factorization of 
the initial state probability function propagates in time. 

Proof. From (41) we found that 

f(")(t) = E(.)(t)  " f(')(0) 

is the solution to the sub master equation (6). Then let f(')(0) be factored 
accordingly: 

. . . .  | 1 7 4  8~ir " f~(k)( e' . . . .  
el en ~el Y o 

xf( l ) (ek+ ,; 0 ) ' ' '  f(1)(e.; O) 

Then 

| 1 7 4  
f(")(t)-- ~]e, " ' "  E E ( I ) ( t )  | " " " e n  | E ( l ) ( t )  " ~exY 

x f(.k)(e, . . . . .  ek; Off(. ')(e k +,; 0 ) . . .  f(. ')(e. ; O) 

= Eel " " " Een E ( I ) ( t )  | " " " | E ( I ) ( / )  " ~e,Y 

><f}k)(e, . . . . .  ek; O) l | E(o( t  ) 
. I  

) �9 [~ek+'X f ( 1 ) ( e k + l ; O ) | 1 7 4  8eY  f (1) (en;O)  ( 4 3 )  
[Se~+,y  o 

by application of the Kronecker product property. 
Then by summing over states ek+ L . . . . .  e, in (41) the form of 

f(,k)(e l . . . . .  ek; t) is found to be 

f(.k~(t) = e~, o �9 ~(.~(0) 

Hence Eq. (43) is found to be 

f(n)(t) = E(k)( t ) f  (k)(O) | [ E(,)(t)" I(')(0)] k +, |  | [ E(1)(t) �9 f ( ! ) ( 0 )  ] n 

= f(k~(t) | [f(.'~(0 lk + , |  | [ f?)(t)  ] .  (44) 

and the initial state factorization propagates exactly. [] 

, e~;O) 

(42) 

8e,,X 1 
8eor J 

( 8e~ x } 

|  |  ~ekr 
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9. THE MASTER EQUATION PROBABILITY FUNCTION 

Using standard techniques (Conlan, (3) McQuarrie, (4) Ishida, (14) 
Bartholomay (15)) the master equation probability function, P2(x; t I x~ 0), 
can be obtained for a more general initial condition than heretofore 
considered. 

Defining the moment generating function of P2(x; t l x~ 0) as 

F(s,t) = ~ P2(x;tlx~ x (45) 
x = 0  

McQuarrie (4) has shown that the partial differential equation satisfied by 
F(s, t) is 

OF(s, t) 
O-~F(s't)=[~+(tz-~)s-at Ps2] a ~  + # n ( s -  1)F(s,t) (46) 

Letting the initial condition be x(0)=  x ~ and y (0 )=  y0, Conlan(3) finds 
that F(s, t) has the following form: 

F(s,t) = X # /~ /L e_0~+x), ~ + ^ +  t~+A e-(~+~)' ~+X ~+X 

•  ~ ~ e-(~+x)t) + s( l z ~ )I x~ 

(47) 

Hence we see that F(s, t) is composed of all four of the fundamental sub 
master transition probabilities and can be expressed as 

r(s, t) = [ f.(')( Y;tl Y; O) + sf.(l)(S;tl Y; 0)] y~ 

x[f(1)(X;t lY;O)+sf( l ) (X;t lX;O)] x~ (48) 

Using the binomial theorem in Eq. (47) and comparing to Eq. (45) 
P2(x; t lx~ 0) is easily found to be 

x 

P2(x;tlx~ = 2 ( yo ](xO]akbxO_kcX_kdyO (x_k, (49) 
k=O\X-- k ) \  k 1 

where 

a = a(t) = fn(')(X;tl X; O) 

b = b(t)=f~(1)(Y;tlX;O ) 

c = c(t)=f~(l)(x;tl Y;0) 
(50) 

d =  d (0  = f.('~(r; t I r ; 0 )  
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P2(x; t I x~ 0) has a rich structure and some interesting properties. By the 
definitions of a, b, c, d, P2(x; t lx~ 0) satisfies the following initial condi- 
tion: 

P2(x;O[x~ = ( O1 Xotherwise= x~ (51) 

Furthermore, P2(x; t] x~ 0) loses all influence of the initial value x ~ = x(0) 
in the limit t ~ oo 

n = x( t )  + y ( t ) - -  x ~ +yO (52) 

The random variable x whose distribution is given by Eq. (49) is itself the 
sum of two random variables: x = k + (x - k). The random variable k is 
the number of particles from the initial X population that remain X at time 
t. The random variable x - k is the number of particles from the initial Y 
population that become X at time t. Each of these random variables has a 
binomial distribution given by 

k :  p(  k; t , x~ O) = ( k~ )akb~~ 

a = a(t) = f~(l)(X; t l X; 0) - 
g + X 

I z + )t ~ e-(X+g)t 

~k ~ e-(X+tDt b = b(t) =f~( ')(Y;t lX;O ) = X+ g h +  g 

(k> = a( t )x  ~ 

2 a( t )b( t )x  o Ok -~ 

x -  k : p ( x -  k ; , t / ; o ) - -  

c = c ( O  - - - g ' ( x ;  tl r ; o )  = - -  I I ~ e - ( ~ + I D t  
)~+/x X + u  

X d=  d( t) = f(.1)( Y; t I Y;O)= h+ 
- -  + ~ e - O , + t O ,  

<x - k> = c ( t ) y  ~ 

02~-k = c(t)d(t)Y ~ 

(53) 

If the random variables k and x - k  are independent then a two- 



The Sub Master Equation 781 

dimensional random variable (k, x - k) will have the following distribution 

( ICxOla .O ,x 
x k} \  k } 

Then we see that Eq. (49) is the discrete case analog for the distribution of 
the sum of two random variables 

e2(x;tlx~ = ~ p ( k , x -  k; t lx~ y~ (55) 
k = 0  

The independence of the two initial populations is further emphasized 
in the equations for the mean and variance of x 

( x )  = a ( t ) x  ~ + ~ ( t ) y  ~ = <k> + ( x  - k> 
(56) 

o 2 = a(t)b(t)x ~ + c(t)d(t)y ~ 

=o~+4_k 
Recognizing the binomial nature of the initial X and Y populations it 

is of interest to derive the distribution for the sum k + (x - k) in the limit 
n---> ~ .  Following the treatment of Gnedenko (2) we start by applying the 
Local DeMoivre Laplace theorem to p(k, x - k; t I x~ y0; 0), 

p(k ,x  - k; t lx~ y~ 

- -  27rOkOx_k -5 + -_--2 -- a k Ox-- k 

( x ~  ce, y ~  m) (57) 

Then ~2(x; t lx~ O) (n = x ~ + yO ~ ~)  is given as the integral 

~2(x; t I x~ 0) 

1 f exp{  l [ ( k - ( k ) )  z + 
[ ( x - k ) - ( x - k ) ] Z ] }  

dk 

(n--~ oo) (58) 

The integral is straightforward and the result is 

~22(x;tlxO;O)_ 1 e x p [ _ l ( x _ ( x ) ) 2 / 2 o 2 1  (59) 
(2~4) '/2 

in which the mean ( x )  and variance o~ are identical to the corresponding 
mean and variance for the finite case as expressed in Eq. (56). We draw 
attention to the fact that the time variation in ~2(x; t[ x~ 0) is in both ( x )  
and o x. Furthermore, the o~ structure can now be expressed in terms of the 
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four transition probabilities and the initial single-particle probabilities as 

a 2 = n[ f.(')(X;tl x; 0)/( l)(Y;tl x; 0)f(1)(X; 0) 

+ f( ' )(X;t  I r;o)f(.t)(r;tl  Y;O)f(~')(r;o)] (60) 

The variance is strictly less than v~ for all time and must exist in a 
population of single particles undergoing a unimolecular isomerization not 
only due to the initial state uncertainties but also due to the probabilistic 
nature of its dynamics; that is, a single particle's identity is governed only 
by transition probabilities not by any deterministic knowledge. 

10. THE LANGEVIN EQUATION AND FLUCTUATING FORCE 

From the form of the sub master equation for f~(1)(X; t) 

f.(')(X; t) = -Xf}')(X; t) + ttf~(')( Y; t) (61) Ot 

the equation for the macrovariable follows immediately 

a-t (x(t)} = -X(x ( t ) }  + tt(y(t)} (62) 

which is consistent with the law of mass action and with Keizer's (12'13) first 
postulate in his theory of spontaneous fluctuations in macroscopic systems. 

The main difference here is the relationship between the phenomeno- 
logical rate equation and the six probability densities which the sub master 
theory generates. 

0 n[_Xf(,)(X;tlX; l)(x; t [ O)f(,)(y; O) O5 (x(t))  = 0)/(I)(x; 0) - Xf~ ( Y; 

+ lzf(, ')( Y; t l X; O)f(~ t)( X; O) + Izf(,1)( y; t [ r; o)f,( I)( Y; O) ] 

(63) 

From the relationship between the differential O/Ot and the differen- 
tial operator A(1 ) = [-~ _~] Eq. (13) can be rewritten in a form consistent 
with the Chapman-Kolmogorov treatment 

~__ f2 l)(X; t) = [ - )if2 l)(x; t[ X; 0) +/~f2')( y; t[ X; 0)] f(  ')(X; 0) 
0t 

+ [ -xZ~(')(X;t[ Y; O) + t~f(')( V;t[ Y; O) ] f.(')( r ;  O) 

[ A .f.( ')(x; t I Y; 0)1 f~(')(Y; O) (64) + 
L ~t a, 
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That is, the time variation in f(~l)(X; t) is due to the time variation in the 
transition probabilities of the two paths a particle follows in becoming an X 
particle at time t. 

From the work in the pre~cious section we found the measure of 
fluctuations to have the form 

o 2 = f~( 1)(X; t[ X; 0)f, (')( Y; t I X; 0)x ~ + f,( ')(X; t I Y; 0)f, (1)( Y; t[ Y; 0)y ~ 

(65) 

It is straightforward to show that the differential equation satisfied by 
o~ is 

F(t) (66) 

r ( 0  = t I x ;  o) + V ' (x;tl r ;  0) 

+ #f~(1)(y;t]X;O)f~(')(X;O) + I~f~(1)(Y;tl Y;O)f,(')(Y;O) ] (67) 

F(t) is then recognized as the time-dependent covariance matrix of the 
random force postulated in Keizer's('2) theory. 

A Langevin equation for the dynamic fluctuations can then be formu- 
lated to reproduce the equation for o~ 

8x(t) = - (~  + l~)Sx(t) + f (t) (68) 3t 
( f  ( t) f  (s)) = nF(t )8( t -  s) (69) 

which are identical to those postulated by Keizer. ('2) 

11. CONCLUSION 

The theory outlined above gives a dynamical analysis of the sub 
master probability function, f(n)(t). At the nth level, the master equation for 
the probability density Pz(x; t l x~ 0) is generated showing immediately that 
the random variable 6x(t)= x ( t ) -  (x(t)) is Gaussian with variance tr~ 
= o~ + ~r~_ k in the limit as x ~  m, y 0 ~  oo. At the lowest level the sub 
master probability function, f(~l)(t), is shown to satisfy a very simple 
operator equation which generates the four fundamental sub master transi- 
tion probability densities. These four transition densities along with the 
initial state densities then generate by simple multiplication the equations 
for the macroscopic variables (x(t)), o2(0, and (f(t)f(s)). 

The incorporation of the Kronecker product into the formulation 
produced an analytical expression for f(~n)(t) in terms of E(1)(t ), which is 
tantamount to solving a set of 2 n (n~10  23) coupled linear differential 
equations. 
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The Kronecker product also led to the remarkable observation that the 
set of 2" equations when expressed in vector operator form is nothing other 
than the mathematical expression of the Leibnitz rule for the operator A(,). 

The development of a factorization theorem for the probability densi- 
ties indicated that the character of the correlation remains with the system 
forever only "blinking out" at equilibrium. 

The set of hierarchical equations describing the time rate of change of 
subgroups of k molecules or particles in the n-body system indicates that 
these k subgroups have the same type of dynamics and time evolution as 
the complete n-body system. It is important to note that it requires at least 
a bimolecular process to produce a hierarchical set of differential equations 
relating the time rate of change of f(~)(t) to a linear combination of 
f(k+ ~)(t). The unimolecular process only connects the time rate of change 
of f~k)(t) to a linear combination of f~k)(t). 

The sub master theory also produces the probabilistic dynamic struc- 
2 A ~, 

ture for (x(t)), G(t), and (f(t)f(s)) summarized as follows: 

[ ]_ l (y( t ) )  f ( l ) (y; t lX;O ) f,(l)(Y;t[ Y;0) f(l)(Y;0) 

Ox 2 = n [ f(l)(X; t I X; 0)f,(~)( Y; t l X; 0)f, (l)(x; 0) 
(70) 

+ f(')(X; t [ Y; O)f.(')( Y; O) ] 

( f  (t)f (s)) = n[hf(')(X;tlX;O)f(1)(X;O) + Xf(1)(X;t[ Y;O)f(.1)(y;o) 

+ t~f(,')(Y;t[X;O)f,(')(X;O) + I~f(.')(Y;tt r;o)f(,')(Y;O)l 
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